TWO NEW SPECIES OF FRESHWATER ATYID SHRIMPS (CRUSTACEA: DECAPODA: ATYIDAE) FROM NORTHERN QUEENSLAND AND THE DISTRIBUTIONALECOL.OGY OF THE CARIDINA TYPUS SPECIES-GROUPIN AUSTRALIA

SATISH CHOY AND JONATHANMARSHALL

Abstract

Choy, S \& Marshall, J. 199706 30: Two new species of freshwater atyid shrimps (Crustacea: Decapoda. Atyidae) Irom nothern Queensland and the distributional ecology of the Caridina typus species-group in australia, Memoirs of the Queensland Museum.41(1):25-36. Brisbane. ISSN

 $0079-8835$.
Abstract

Two new species of Treshwater atyid shrimps are deseribed frons tropical Queensland and the four members of the Caridina typus-group now known from Australia are reviewed. Caridina confusa sp: nov is a slender animal with a relatively Iong, dorsoventrally flatlened, naked rostrum, found predominantly in open grassland streams of the Atherton Tableland. Caridina spinula sp. nov., distinguished by its spiniform pterygostomian angle, is found in small secondary rainforest streams on northeastern Cape York Peninsula. Although both these new species look superficially like C. zebra Short, 1993, they can be distinguished by a combination of characteristics such as rostrum length, shape of the pterygostomian angle, length-depth ratio of the sixth abdominal segment and the shape of the protopod of the uropod. C. zebra is found predominantly in primary rainforest streams of the Atherton Tableland and C. typus is found in coastal trupical streams. All species are allopatric, except for slight overlap in the distribution of C. zetara and C. confusa in some anthropogenically disturbed streams of the upper Barron and the upper Norih Johnstone catchments. Crustacea, Atyidae, Caridina, Queensland, distributlon.

S. Choy, Resource Sciences Centre, Deparmem of Nanural Kesources, 1345 Ipwwich Road,
Rocklea, Queensland 4106, Australia; , /. Marshall, Faculty of Envirommental Sciences,
Griffith University, Nathan, Queensland 4111, Australia: 11 Decenber 1996 .

Caridina zebra Short, 1993 is a tropical montane species belonging to the Caridina rypus spe-cies-group (Short, 1993). This group is characterised by a short, dorsally unarmed rostrum, the presence of epipods on the 1st four pairs of pereiopods and the presence of an appendix interna on the endopod of the 1 st pleopod of $\delta^{\circ} \delta^{\circ}$. Short (1993) reported C. zebra from the montane streams of the wet tropical rainforest arcas of the Tully, Herbert and Johnstone River catchments, at altitudes of $400-900 \mathrm{~m}$. A smaller population of C. zebra, is also known to oceur in the lower Koolmoon Creek (alt, 150 m), a tributary of the Tully River (Hughes et al, 1996). Caridina typus Milne Edwards, 1837 has been reported from coastal Iowland streams at Cooktown and on Dunk 1sland (Roux, 1926; Riek, 1953; Short, 1993).

Re-examination of Short's material from the Wet Tropics-Atherton Tableland area (Short. 1993: 62) indicated the presence of two distinet morphological groups, one group possessing a longer rostrum, from anthropogenically disturbed grassland areas and the other possessing a shorter rostrum, generally from relatively undisturbed rainforest areas. This was confirmed by examination of recently collected material from
the same area ($17-18^{\circ} \mathrm{S}, 145-146^{\circ} \mathrm{E}$). Although the distribution of these two groups tend to overlap slightly, they are morphologically and ecologically distinct. They each warrant species status. Since the short rostrum form is the holotype of C : zebra Short, 1993, its status is maintained. The long rostrum form is described as a new species, Caridina confusa.
A third morphological and geographically isolated group was recently collected from the streams in the McIlwraith Range, Cape York Peninsula ($13^{\circ} 35-44^{\circ} \mathrm{S}, 143^{\circ} 20^{\circ} \mathrm{E}$). This is also described as a new species, Caridina spinula,

MATERIAL AND METHODS

Specimens from the Queensland Museum atre provided with catalogue numbers with the prefix QM. Unless otherwise stated all material was collected by the first author and various colleagues from Griffith University and the Queensland Department of Natural Resources (formerly part Deparmment of Primary Industries). All examined specimens will be deposited in the Queensland Museum. Collection was made using a standard pond net and all samples immediately preserved. The abbreviations used are: 6 S . sixili abdominal segment Jength; A1P, antennular pe-
duncle lengib：A2P，antental peduncle length； CL，post－vitital carapace length；RL，rostrum length；SC，scaphocerite length；SL，body length from the post－orbital margin of the carapace to the tip of the telson；ST，stylocerite length；T， telson length．
The format of the description and morphologi－ cul terms follow Choy（1991）．Although prob－ lems in the terminology of cuticle spination and setation still exist，we have followed the termi－ nology of Felgenhauer（1992）．

SYSTEMATICS

Caridina typus Milne Edwards， 1837
Caridinu typur Milne Edwards．1837，p．363，pl．256is， figs，4．5；Holthuis，1965，p．10，fig． 3.
Candina rypus ryica Bouvier．1925，p．250，figs．272－ 295.

Caridüra typa Reux，1926，p．201：Riek，1953，p． 117.
MATERIAL EXAMINED．Proserpine River below Proserpine（20 ${ }^{\circ} 24.2^{\circ}$ S， $148^{\prime} 31.1^{\prime}$ E），19．10．94，L．K． Patterson． 15 ＇s d $(2.54 .1 \mathrm{~mm} \mathrm{CL}), 799(4.8-5.1 \mathrm{~mm}$ CL）：QM W4795，Brandy Creek near Proserpine （21） $20^{\circ} \mathrm{S}, 148^{\circ} 38^{\circ} \mathrm{E}$ ） 21.4 .75 ，R．Monroe P ．File－ wood，ovigerous $\&(7.81 \mathrm{~mm} \mathrm{CL})$ ，non－avigerous 오 （ 5.82 mm CL）：QM W14241，Lindeman 1s．，west side， small creek mear goll course（ $20^{\circ} 27^{\circ} \mathrm{S}, 149^{\circ} 02^{\circ} \mathrm{E}$ ）， 27.3 .83 ，」，Short，오（ $4.03-4.09 \mathrm{~mm} \mathrm{CL}$ ），우 ㅇ（ $5.5-$ 7.2 mmCL ）．

DLAGNOSIS．Rostrum short，laterally com－ pressed，with 1－5 teeth on ventral margin：diaer－ esis with more than 20 hamate setac；intermediate setae on posterior telsonic margin longer than lateral pair，plumose，with sclerotinous plug；egg small（length $<0.52 \mathrm{~mm}$ ）．
REMARKS．Caridina typus has a wide ranging distribution，extending from easiern and southern Africa through the Indian Ocean islands，South－ cast Asia to Japan，Australia and through to French Polynesia．In Australia it has been col－ lected only from the northeastern coastal areas of the mainland and from the nearby islands，be－ tween latitudes $15-21^{\circ} \mathrm{S}$ ．Although it seems to be confined to the lower reaches of coastal and is－ land Australian streams，Ci typus has been col－ lected from allitudes of 300 m elsewhere（Choy， 1991）．

Caridina zebra Short， 1993

Caridinazeebra Short，1993．p． 62 （im part）．
MATERLAL EXAMINED All specimens lised by Shorl．I993，p．62．ADDITIONAL MATERLAL．

Upper Tully Catchment：QMW17118，Tully River above Koombooloomba Dam（ $17^{\circ} 49^{\circ} \mathrm{S}, 145^{\circ} 35^{\prime} \mathrm{E}_{\text {。 }}$ 720 m）， $23.10,91$ ，מumerous specimens： Koombooloomba Creek（ $17^{\circ} 51.5^{\circ} \mathrm{S}, 145^{\circ} 35.9^{\prime} \mathrm{E}$ ， $790 \mathrm{~m}), 30.10 .93,25$ specimens；Echo Creek $\left(17^{\circ} 59,5^{\prime} \mathrm{S}, 145^{\circ} 38.3^{\circ} \mathrm{E}, 830 \mathrm{~m}\right), 30.10 .93$ ， 50 speci－ mens；Carpentar Creek（ $17^{\circ} 53.3^{\circ} \mathrm{S}, 145^{\circ} 353^{\prime} \mathrm{E}$ ， 750 m ）， $30.10 .93,23$ specimens；Costigan Creck $\left(17^{\circ} 56^{\circ} \mathrm{S}, 145^{\circ} 37^{\circ} \mathrm{E}, 770 \mathrm{~m}\right), 3,12,94,11$ specimens （1．8－4．2mm CL）；QMW17119，Koglmoon Creek $\left(17^{\circ} 44^{\prime}\right.$ S， $145^{\circ} 34^{\prime}$ E）， $25.7 .90,4$ specimens，Koolmoon Creek at Walter＇s Waterhole（ $17^{\circ} 44.11^{\circ} \mathrm{S}, 145^{\circ} 34^{\circ} \mathrm{E}$ ， $760 \mathrm{~m}), 3(0,10,93,7$ specimens；Koolmoon Creek near Tully River confluence（ $17^{\circ} 44.9^{\circ} \mathrm{S}, 145^{\circ} 37.1^{\prime} \mathrm{E}$ $150 \mathrm{~m}), 31.10,93,6$ specimens，Upper Herbert Catch－ ment：QMW17116．Blunder Creek（ $17^{\circ} 46^{\circ}$ S． $\left.145^{\circ} 33^{\prime} \mathrm{E}\right), 28.11 .90,3$ specimens；Blunder Creek $\left(17^{\circ} 47.5^{\prime} \mathrm{S}, 145^{\circ} 32.2^{\prime} \mathrm{E}, 750 \mathrm{~m}\right), 3.12 .94,1$ 6， 2 ovigerous 우（ $4.08-5.6 \mathrm{~mm}$ CL）；Rocky Creek $\left(17^{\circ} 44.7^{\prime} \mathrm{S}, 145^{\circ} 31.3^{\circ} \mathrm{E}, 760 \mathrm{~m}\right), 30.10 .93,34$ spect－ mens：Cameroon Creek， $3.12 .94,14$ specimens（1．4－ 4.2 mm CL）；millstream River at Diversion Weir $\left(17^{\circ} 40^{\circ} \mathrm{S}, 145^{\circ} 26^{\circ} \mathrm{E}, 720 \mathrm{~m}\right), 12.10 .94 ; 2$ specimens； Upper North Johnstone Catchment：QMW 19261， Malunda Falls，（ $17^{\circ} 20.2^{\prime} \mathrm{S}, 145^{\circ} 43.8^{\prime} \mathrm{E}, 750 \mathrm{~m}$ ）， $211,93,30$ specimens（including ovigerous 후운： QMW 19285，Raspberry Creek， $3-4 \mathrm{~km}$ above Malanda Falls（ $17^{\circ} 22.75^{\prime}$ S，145E33．6＇E），14．11．91，J．Short，P． Davie，A Humpherys，silt \＆para grass（Urochioa mutica）infested stream；Raspherry Creek（ $17^{\circ} 25.5^{\prime} \mathrm{S}$ ， $145^{\circ} 28,8^{\prime}$ E）， $31.10 .93,100$ specimens；North Johnstone River（ $17^{\circ} 40^{\circ} \mathrm{S}, 145^{\circ} 39^{\circ} \mathrm{E}, 650 \mathrm{~m}$ ），5．8．93，2 99． 1 6；Ithaca Creek（ $17^{\circ} 24^{\circ} \mathrm{S}, 145^{\circ} 38^{\prime} \mathrm{E}, ~ 650 \mathrm{~m}$ ）， 7.11 .94 .2 뭉．Ithaca Creck at Bauld Rd（ $17^{\circ} 23^{\prime}$＇S， $\left.145^{\circ} 38^{\circ} \mathrm{E}, 685 \mathrm{~m}\right), 13.10,94,50$ specintens；Thiaki Creek at edge of rainforest（ $17^{\circ} 25^{\circ} \mathrm{S}, 145^{\circ} 32^{\prime} \mathrm{E}, 795 \mathrm{~m}$ ）， $5.12 .94,9$ specimens（ $3,4-4,8 \mathrm{~mm}$ CL）；Thiaki Creek in rainforest， $13.10 .94,15$ specimens；North Beatrice River at Palmerston Highway（ $17^{\circ} 32^{\prime} \mathrm{S}, 145^{\circ} 36^{\prime} \mathrm{F}$ ， $720 \mathrm{~m}), 13.10 .94,25$ specimens；Henrieta Creck at Palmerston Highway（ $17^{\circ} 36^{\prime} \mathrm{S}, 145^{\circ} 45^{\prime} \mathrm{E}, 360 \mathrm{~m}$ ）， 14．10．94， 18 specimens；QMW 18722，Gooligan Creek，23，10，91，numerous specimens；Goolagan Creek（ $17^{\circ} 36.3^{\prime} \mathrm{S}, 145^{\circ} 45.5^{\prime} \mathrm{E}, 370 \mathrm{~m}$ ）， 32 specimens： Upper Batron Catchment：QMW3078，Atherton tap water（ $\left.17^{\circ} 16^{\circ} \mathrm{S}, 145^{\circ} 29^{\circ} \mathrm{E}\right), 14.5 .62$, QDPI， 2 d $^{\circ}$ ； Barron River at The Crater（ $19^{\circ} 17^{\circ} \mathrm{S}, 145^{\circ} 29^{\circ} \mathrm{E}$ ）， 7．12．94． 10 万ु $\delta .8 .89$（2 ovigerous）（ $2.0-5.0 \mathrm{mmCL}$ ）； Barron River at Hemmings Road， $28.11 .94,3$ juve－ niles，Wright＇s Creek（ $\left.17^{\circ} 04{ }^{\circ} \mathrm{S}, 145^{\circ} 45^{\prime} \mathrm{E}\right), 4.12 .94,4$古古（ 1 ovigerous）：Peterson Creek（ $17^{\circ} 17^{\prime} \mathrm{S}$ ， $\left.145^{\circ} 36^{\circ} \mathrm{E}\right)$ ，1994－95，numerous specimens；Kauri Creek（ $16^{\circ} 54^{\prime} \mathrm{S}, 145^{\circ} 38^{\prime} \mathrm{E}$ ），1994－95，numerous spec－ imens：Prior＇s Creek，I OP；Upper Gwymne Creek in small pocket of rainforest（ $17^{\circ} 23.3^{\prime} \mathrm{S}, 145^{\circ} 30.3^{\circ} \mathrm{E}$ ）， $5.12 .94,279,19$ すठ（ $3.6-4.0 \mathrm{~mm} \mathrm{CL}$ ）．

DIAGNOSIS，Body（Fig．Ib）rotund，may have black and white transverse banding；rostrum（Fig． 2a－f）short，extending to base of 3rd antennular peduncle（ $\mathrm{RL}<0,5 \mathrm{CL}$ ），dorsoventrally com－

FIG, 1. a, Caridina confusa sp, nov, B; b, C. zebra Short 1993, है; ©, C. spmula sp. nov., \&, Scale $=1 \mathrm{~mm}$.
pressed, may have an apical tooth (Fig. 2e); pterygostomian angle acute but not spiniform; dorsal telsonic spines (Fig. 3a) on posterior 0.66 of telson; posterior telsonic margin (Fig. 3f, g) usually with median spine, sub-lateral pair of setae sigmoid, longer than intermediate setae, setation numerically variable; protopod of uropod (Fig. 3a, d) elongate, spinate; eggs large (length $<1.32 \mathrm{~mm}$); found mainly in primary rainforest streams on the Atherton Tableland along the Lamb-Francis-Cardwell Ranges.

REMARKS. Specimens of C. zebra from some locations (streams in the upper Barron Catchment) may seem to have a fairly long rostrum (Fig. 2a, d, f), thus resembling C. confusa sp, nov. However, the rostrum length relative to the carapace length as well as other features (Table 2), such as the relative lengths of the antennular peduncle, scaphocerite, sixth abdominal segment and the telson are characteristic of this species. Caridina zebra is one of only two species of atyid shrimps in the primary rainforest streams of the upper Tully (the other being Australatya striolath), where it is very abundant. In other carchments (Barron, N. Johnstone and Herbert),
it is found mainly in the rainforest reaches of streams. Howeyer, it may be common in some disturbed streams such as Raspberry, thaca und Prior's Creeks. Unlike the upper Tully, which has an extensive relatively undisturbed forested area, the upper reaches of the Barron and N. Johnstone Rivers have been generally cleared and converted to pasture. Streams running through these open grassland are inhabited predominantly by C. confusa sp, nov. Only a small area of the upper Herbert catchment is in the wet (simple notophyll vine to complex mesophyll vine) forest; the rest is in dry sclerophyll forest. The abundance of C. zebra in these dry-zone streams is low; these streams are inliabited by another atyid, Paratya australiensis. It is interesting to note that only specimens from some of the rainforest streams of the upper Tully have the black and white transverse banding on their bodies (see Short, 1993), In all other areas these animals are translucent brown, with scattered tiny reddish and bluishgreen chromatophores, similar to individuals of the two new species.

Caridina confusa sp. nov.

Caridina zebra Short, 1993, p. 62 (in part): QMW 18841, QMW 18720.

MATERIAL EXAMINED. HOLOTYPE. QMW21906 ovigerous ? . $4.8 \mathrm{~mm} \mathrm{CL}, 2.56 \mathrm{~mm}$ RL, 19.2 mm SL, ThiakiCreek al Seamark Road crossing ($17^{\circ} 23.5^{\prime} \mathrm{S}$, $145^{\circ} 32.5^{\prime} \mathrm{E}, 750 \mathrm{~m}$), stream flowing through open grazing land, fringing, para grass, water depth 0.30.5 m , velocity 0.3 ms , silty substrate, hand-netted amongst edge para grass, 26.8.94, S. Choy. M. Hopper ALLOTYPE, QMW21907 adult © © 3.4 mm CL. 2.0 mm RL, 14.2 mm SL, same locality datas hololype, PARATYPES. Upper North Johnstone Catchment: QMW2 1908 upper North Johnstone River near Bromfield Swamp ($17^{\circ} 22.5^{\prime} \mathrm{S}, 145^{\circ} 31.3^{\prime} \mathrm{E}, 700 \mathrm{~m}$), open grazing land, fringing para grass, water depth $0,3-0,5 \mathrm{~m}$, hand-nelled, $4.12 .94,21$ ठठ 5,50 무 (13 ovigerous), ($2.6-5.0 \mathrm{~mm}$ CL); QMW18841, Thiaki Creek $\left(17^{\circ} 24.9^{\prime} \mathrm{S}, 145^{\circ} 35.3^{\prime} \mathrm{E}, 750 \mathrm{~m}\right.$), water depth 0.2 m , electro-fished, 1992, Queensland DPI Fisheries Johnstonc Rivets Survey, 1 of (4.5 mm CL); QMW 18720, small creek about 6 km SW of Malanda $\left(17^{\circ} 22.7^{\prime} \mathrm{S}, 145^{\circ} 33.6^{\prime} \mathrm{E}, 750 \mathrm{~m}\right)$. fringing para grass. water depth 0.2-1.5m, electro-fished, 1992, Queensland DPI Fisheries Johnstone Rivers Survey of (3.9 mm CL), 2 뭄 ($4.3,4.5 \mathrm{~mm} \mathrm{CL}$); QMW 18725 , Thiaki Creek, macrophyte area, sume data as
 6.1 mm CL): QMW21909 Thiaki Creck at Scamark Road crossing ($17^{\circ} 23.5^{\prime} \mathrm{S}, 145^{\circ} 32.5^{\circ} \mathrm{E}, 750 \mathrm{~m}$), open grazing land, Iringing para grass, water depth $0.3-0.5 \mathrm{~m}$, hand-netted, 26.8.94, c, 100 specimens; QMW21910 Thiaki Creck at downstream edge of rainforest, fing-
ing para grass，depth $0.3-0.5 \mathrm{~m}$ ， hand－netted， 5.12 .94 ，c． 50 spec．； QMW21917 Ithaca Creek in rainforest pocket（ $17^{\circ} 24.7^{\prime} \mathrm{S}$ ， $145^{\circ} 30.3^{\prime} \mathrm{E}$ ），le af litter，water depth 0．3－0．5m，hand－netted， 5．12．94， 6 がす， 7 여 $9(2$ oviger－ ous）．Upper Barron Catchment： QMW21911 Gwynne Creek at Gillies Road crossing（ $17^{\circ} 20.3^{\prime} \mathrm{S}$ ， $145^{\circ} 31.1^{\prime} \mathrm{E}, 750 \mathrm{~m}$ ），open grazing land with small pocket of riparian rainforest upstream，fringing para grass，water depth $0.3-0.6 \mathrm{~m}$ ，hand－ netted， 5.12 .94 ，c． 200 specimens （1．28－5．84mm CL）；QMW21912 upper Gwynne Creek in rainforest pocket（ $17^{\circ} 23.3^{\prime} \mathrm{S}, 145^{\circ} 30.3^{\prime} \mathrm{E}$ ， 720 m ），hand－netted，leaf litter， water depth $0.2-0.4 \mathrm{~m}, 5.12 .94,14$ specimens（ $4.0-5.4 \mathrm{~mm}$ CL）．
DIAGNOSIS．Body slender； rostrum long，reaching tip of antennular peduncle（RL $>0.5 \mathrm{CL}$ ），dorso－ventrally com－ pressed，may be armed with one dorsal tooth；antennular peduncle long（ $\mathrm{A} 1 \mathrm{P}>0.5 \mathrm{CL}$ ）， antennal peduncle long （A2P＞0．6CL），stylocerite long （ST＞0．4CL），scaphocerite long （ $\mathrm{SC}>0.8 \mathrm{CL}$ ），sixth abdominal segment long（ $6 \mathrm{~S}>0.5 \mathrm{CL}$ ）with acute postero－ventral margin； telson long and slender （ $\mathrm{T}>0.6 \mathrm{CL}$ ）；dorsal telsonic spines confined to posterior half of telson，median spine on posterior telsonic margin ab－ sent；protopod of uropods acute but not spinose．

DESCRIPTION．Body（Fig．la）small，sub－ cylindrical；ठठ ठ in collection up to 4.9 mm CL， 오 up to 6.2 mm CL．
Cephalothorax（Figs．2i，j；4a，b）rotund，gla－ brous，breadth c． 0.7 CL，depth c． 0.7 CL ；rostrum long，0．43－0．76 CL，length 12－16 X height，curv－ ing downward or sigmoid，reaching base to tip of distal segment of antennular peduncle，asctose， dorsoventrally compressed，a dorsal tooth may be present．Antennal spine short，strong，placed on lower orbital angle；pterygostomian angle obtuse， pterygostomian spine absent．Eyes large，c． 0.25 CL，corneal diameter c ．equals eyestalk length， retinal pigmentation present．Antennular pedun－ cle shorter than scaphocerite，0．6－0．7 CL；

FIG．2．a，C．zebra，from Wright＇s Ck，ovig．ㅇ；b，C．zebra，from Kauri Ck， ovig．ㅎ；c，C．zebra，from upper Gwynne Ck，$\uparrow ;$ d，C．zebra，from Peterson Ck，oै；e，C．zebra，from upper Tully River，\uparrow ；f，C．zebra，from upper

stylocerite length 0.7 X proximal antennular seg－ ment length；anterolateral angle of proximal seg－ ment acute，reaching to about 0.15 X intermediate segment length；intermediate segment 0.7 X proximal scgment length，about 1.7 X distal seg－ ment length；all segments with submarginal plu－ mose setae；distal segment fringed laterally and apically with plumose setae．Antennal peduncle 0．5－0．6 X scaphocerite length；scaphocerite slightly longer than antennular peduncle，0．8－1．0 CL，outer margin straight to slightly concave， asetose，ending in strong subapical spine，length 3．5 X width，distal lamella and inner margin with plumose setac．Branchial formula typical for genus．

Mandibles dimorphic，without palp；right man－ dible with $6-8$ strong，sharp incisor teeth laterally；

n) Wemil

PIG. 3. a, C. zebra, telson and protopod of uropod. ©. $4.8 \mathrm{~mm} \mathrm{CL} ; \mathrm{b}, \mathrm{C}$. comfisa, telson and protopod, δ. 4.32 mm CL; c, C. confusc, posterior hody: d. C. zebra, posterior body; e, C. zebra. dactylus of 3rd perciopod of 9 : f. C. zebra, dactylus of 3 rd pereiopod of d: $\mathrm{g}, \mathrm{h}, \mathrm{C}$. eebra, posterior margin of telson. Scales $=1 \mathrm{~mm}(a-d), 0.1 \mathrm{mml}(e-h)$.
medially two groups of setac, one group with bent hamate setac, other group with finer straight plumose sctac; molar process ridged; left mandible with $6-8$ strong tecth: medially three groups of setae, molar process ridged.
Maxillula with simple palp, slightly expanded distally, with long plumose setae distally. few simple setae proximally; lower lacinia with broadly rounded margin, bearing several rows of plumose and simple setae; upper lacinia broadly clongate, inner edge straight, with several rows of strong spiniform, hamate, denticulate and plumose setac. outer and lower inner margins with plumose setae.
Maxilla with slender tapering palp. shorter than upper endite cleft, setose; margin and submargin of upper and middle endite with simple, hamate. plunose and denticulate setae; lower endite with hamate setae: scaplognathite with regular tow of Iong plumose setie on distal margin, with shorter hamate ones continuing down proximal triangu-
lar process which has c. 11 long simple setac, some with prominent dilation at base.
First maxilliped with broadly triangular lamellar palp, ending in pointed tip. margins with plumose setae; ultimate and penaltimate segments of endites indistinctly divided; inner margin of ultimate segment with long denticulate setae, long rows of plumose. simple and hamate setae submarginally. transverse fows of plumose setae proximally; exopod flagellum distinet, well-developed, with submarginal and marginal plumose setae; caridean lobe narrow, with marginal and submarginal plumose setae.
Second maxilliped with dactylar and propoodal segments if endopod fused; inner margins ol' all three proximal segments with long simple, hamate and plumnse setae; exopod long, nanow with marginal long plumose setae distally and shonter ones proximally.
Third maxilliped reaching beyond tip of antennular peduncle; endopod three-segmentel, basal segment length e. 7 X width; penultimate segment length c. 7 X width, c. 0.9 X basal segment length, with transverse rows of spiniform hamate setac; distal segment c. 0.9 X as long as penullimate segment. ending in large claw-like apical hamate sela surrounded by simple and plumuse ones, behind which there are $7-9$ hanate setae on distal 3rd of posterior margin. clump of serrate and pappose setae proximally; exopod reaching about 0.5 of 2nd endopod segment. disLal margin with long plumose setae.

First pereiopod (Fig. 4c) reaching tip of basal antennular segment; chela length 1.7-2.2 X width, movable finger 1.1 X as long as palm, length 2.9-3.1 X widh: finger lips rounded, without hooks, setal brushes well developed. Carpus attached to chela ventrally, excavated distodorsally, length 1.3-1.6 X width, 0.6-0.8 X chela length, 0.94 X merus length. Merus compressed. 0.6 X as wide as carpus. Ischium length 0.41 X merus length. Epipod present.

Second perciopod (Fig. 4d) reaching tup of 2nd segment of antennular peduncle, more slender and longet than ist perciopod. Chela length 2.4 . 2.6 X width; movable finger length 4.9-5.1 X width. $1.5 X$ as long as palm; finger tips without hooks, setal brushes well developed. Carpus subconical, length $3.5-4.8 \mathrm{X}$ width. 1.0-1.3 X chela length, 1.2 x morus length. Ischium length 0.67 X merus length. Epipod present.
Third pereiopod over-reaching antennular peduncle tip by about 0.33 distal propodus. Dactylus sexually dimorphic in adults (6f. Figs. 30 and 30), length c. 3.8 X width. c. 0.2 X propodus

FIG. 4. a-e, Caridina confisa sp. nov.; a, cephalothorax; b, anterior cephalothorax, dorsal view; c, 1st pereiopod; d, 2nd pereiopod: e, margin of abdomen and telson, lateral view; f-q, C. spinula sp. nov.; f, margin of abdomen and telson, lateral view; g, eephalothorax; h, rostrum and orbital margin, dorsal view; i, Ist pereiopod; j, 2nd pereiopod; k, 3 rd pereiopod; 1, dactylus of 3 rd perciopod; m, 5 th pereiopod; n, dactylus of 5 th pereiopod; o, posterior margin of telson; p, Ist pleopod of adult ${ }^{*}$: q, endopod of 2 nd pleopod of adult δ. Scales $=1 \mathrm{~mm}(\mathrm{a}$, g), $0.5 \mathrm{~mm}(\mathrm{~b}-\mathrm{f}, \mathrm{h}-\mathrm{k}, \mathrm{m}), 0.1 \mathrm{~mm}(1, \mathrm{n}, \mathrm{o}-\mathrm{q})$.
length, ending in prominent claw-like hamate sela surrounded by simple setae, behind which posterior margin bears 4-6 shorter spiniform hamate setae, these being more robust and upright in adull of Ot. Propodus length 9-I1 X width, pusierior margin and lateral surface bearing two rows of small spiniform hamate setac. Carpus length 0.8 X propodus length, distal projection feebly developed, posterior and lateral surfaces with up to 10 small hamate setae, more spiniform setation in adult of ${ }^{\circ}$. Merus 1.1-1.4 X length of carpus, with 2-3 strong, movable spiniform hamate setae along posterior margin. Ischium 0.2 X length of merus. Epipod present.

Fourth pereiopod reaching tip of 2nd segment to tip of 3rd segment of antemnular peduncle, morphologically similar to 3 rd perenopod.

Fifth pereiopod reaching tip of 2 nd segment to tip of 3 rd segment of amtennular peduncle, Dactylus unguiculate, compressed, length c. 3.8 X width, ending in claw-like apical hamate seta, bearing comb-like row of $55-65$ hamate setae gradually increasing in lengit distally on posterior margin. Propodus length 8-10 X width, 3.6 X dactylus length, bearing two rows of 15-20 short hamate setae on posterior margin. Carpus length $0.5-0.6 \mathrm{X}$ propodus length, bearing 2-7 short hamate setae, distal projection well-developed. Merus distinctly shorter (0,6-0.8 X) but broader (1.8 X) than propodus, bearing 2-4 large spiniform hamate setae. Ischium c. 0.4 X length of merus, with simple setae. Epipod absent.

Abdomen (1a) well developed, rotund, glabrous, c. 2.8 X CL ; sixth abdominal segment clongate, c. 0.6 X CL . length-depth ratio c.1.7; protopod of uropod (Figs. 3e, 2e) acute, aspinose: telson (Fig. 3b) narrow, length c. 0.7 X CL, dorsal spination (3-5 pairs) confined to posterior half of telson; posterior telsonic margin rounded, 3-4 pairs of spine-like setae, decreasing in size interiorly, median spine absent, diaeresis on telsonic exopod 10-16
First of pleopodal endopod with well developed appendix interna arising sub-distally. Appendix inlerma of 2nd of pleopodal endopod reaching beyond middle of appendix masculina, with many retinaculae distally. Appendix masculina subcylindrical, long hamate setae distally and on imner lateral margin.

Live colour, translucent brown.
ETYMOLOGY. The specific epithet is shosen to highlight the fact that this new species can be confused with Caridinazeora

REMARKS. Caridina confusa sp, nov. possesses a longer rostrum and is a much more slender and Elongate animal than C. zebra. It is found primarily in open grassland streams, flowing through pastural land of the upper Barron (Gwynne Creek) and the upper North Johnstone (Ithaca and Thiaki Creeks) catchments. Smaller numbers are found, together with C. zebra, in the small, remnant rainforest areas of these streams. Despite extensive sampling, C. confusa sp , noy, has fiot been found anywhere else.

Caridinta spinula sp. noy,

MATERIAL EXAMINED. HOLOTYPE. QMW21913 adull $\mp, 4.6 \mathrm{~mm}$ CL, 12 mm RL. $17.6 \mathrm{mmm} \mathrm{Sl}_{\mathrm{I}}$ east-flowing first order tributary of Leo Creck, near crossing of Leo Creek Mine Road ($13^{\circ} 44.6^{\circ} \mathrm{S}$. $143^{\circ} 215^{\prime} \mathrm{EJ}$. Nesbit River catchment. Mcllwruith Range, Cape York, alt. c. $450 \mathrm{~m}, 12.7 .95$, , Marshatl. N, Phillips. ALLOTYPE, QMW21914 adut \& $3.2 \mathrm{mmCL}, 0.8 \mathrm{mmRL}, 12.4 \mathrm{~mm} \mathrm{SL}$, same locality data
 (2 ovigerous) same data as holotype: QMW 21422 . west-flowing headwaters of Peach Creck ($143^{\circ} 20^{\prime} \mathrm{E}$, $13^{\circ} 44^{\circ}$ S), Archer River catchment, Mellwraith Range. Cape York Peninsula, att, c. $500 \mathrm{~m}, 15.11 .94$, K. McDomald. 7 ठठ ($3,8-4.6 \mathrm{~mm} \mathrm{CL}$), 34 옹 (1 ovig) (2.6-5.4mmCL, ovig. 9.4 .9 mm).

DIAGNOSIS. Body rotund, rositum short (RL $<0.4 \mathrm{CL}$), dorsoventrally compressed but slighty elevated towards dorsal carina, may have a tooth on the ventral margin, reaching ta tip of basal antennular segment; pterygostomian angle broadly angular to acute and spiniform: dursal telsonic spines confined to posterior half of telson, posteriormedian spine may be present; eggs large (length $>1.32 \mathrm{~mm}$).
DESCRIPTION, Body (Fig, (e) small, subcylindrical: of δ° in collection up to 2.7 mm CL . 뭉 up to 5.4 mm CL

Cephalothorax (Figs. 1c; 2g, h; 4g, h) rolund, glabrous, breadth c. 0.8 CL . depth $0,6-0.8 \mathrm{CL}$. rostrum short $0.20-0.33 \mathrm{CL}$, length $5-10 \mathrm{X}$ height, curving downward, may be elevated medially, reaching tip of basal segment of antennular peduncle, may be setose dorsodistally, dorsoventrally compressed, a rostral tooth may be present on the ventral margin. Antennal spine short. placed on orbital angle; pterygostomian angle broadly angular (in Peach Creek specimens) or acute, spiniform (in Leo Creek specimens). Eyes large, c. 0.2 CL . corneal diameter c. equal eyestalk length, retinal pigmentation present. Antennular peduncle shorer than scaphocerite, $0.6-0.7 \mathrm{CL}$; stylocerite length 0.7 X proximal
antennular segment length; anterolateral angle of proximal antennular segment acute, reaching to about 0.15 X intermediate segment length; intermediate segment 0.7 X proximal segment length, about 1.7 X distal segment length; all segments with submarginal plumose setae; distal segment fringed laterally and apically with plumose setae. Antennal peduncle 0.5-0.6 X scaphocerite length; scaphocerite slightly longer than antennular peduncle, $0.6-0.7 \mathrm{CL}$., outer margin straight to stightly concave, asetose, ending in strong subapical spine, length 2.9-3.0 X width, distal lamella and inner margin with plumose setae. Branchial formula typical for genus.
Mandibles dimorphic, without palp; right mandible with $5-6$ strong, sharp incisor teeth laterally; medially two groups of selac, one group with bent hamate setae, other group with finer straight plumose setae; molar process ridged; left mandible with 5-6 strong teeth; medially three groups of setae, molar process ridged
Maxillula with simple palp, slightly expanded distally, with long plumose setae distally, few simple setae proximally; Jower lacinia with broadly rounded margin, bearing several rows of plumose and simple setae; upper lacinia broadly elongate, inner edge straight, with several rows of strong spiniform, hamate, denticulate and plumose setae, outer and lower inner margins with plumose setae.
Maxilla with slender tapering palp, shorter than upper endite cleft, setose; margin and submargin of upper and middle endite with simple, hamate, plumose and denticulate setae; lower endite with hamate setae; scaphognathite with regular row of long plumose setae on distal margin, with shorter hamate ones continuing down proximal triangular process which has c. II long simple setae, some with prominent dilation at base.
First maxilliped with broadly triangular lamelJar palp, ending in pointed tip, margins with plumose setae; ultimate and penultimate segments of endites indistinctly divided; inner margin of ultimate segment with long denticulate setae, long rows of plumose, simple and hamate setae submarginally, transverse rows of plumose setae proximally; exopod flagellum distinct, welldeveloped, with submarginal and marginal plumose setae; caridean lobe narrow, with marginal and submarginal plumose setae,
Second maxilliped with dactylar and propodal segments of endopod fused; inner margins of all three proximal segments with fong simple hamate and plumose setac; exopod long, narrow with

TABLE 1. Murphometric ratios (range) of pereiopods of Caridinazebra Shorl, 1993, C. confusu sp, nov. and C. spinula sp. nov, D, dactylus; P, propodus; C_{1} carpus; M, merus; L, length; W, widit. 1, 2, 3 and 5 refer to the corresponding pereiopods.

Atribute	C zebra	C. confurs	C spinula
DILDIW	3.0-3.4	2.9-3.1	2.1)-3.4
PILTPIW	2,0-2.5	17-2.2	2,01-22
CIL/CIW	1.6-2,2	1.3-1.6	1.6-2.5
MIL/MIW	28.3 .2	20.2 .3	2.6-29
DIL/P1L	0,5-0.6	$0.5-0.6$	$0.7-0.6$
CILPIL	0.7-0.9	$06-0.8$	0.7-10
MIL/P1L	0.8-1.0	0. $5-10.7$	$0.8-0.9$
D2L/D2W	4,6-4,8	4,9-5,1	9.2-4.5
P2t/P2W	27-3.3	24.2.6	2.4-2.9
C2L/C2W	4.5-6.0	3.5-4.8	5.8.6.1
M2L/M2W	5.1-5.3	4,6,4.3	4.8-5.4
D2L/P2L	0.6-0.8	0,6-0,7	0.5-0.7
C2L/P2L	0.9-1.4	1,0-1.3	1.4-1.6
M2L/P2L	1.1-13	1.0-1.1	12.13
P3L/P3W	7.0-10.0	9.0-10.0	10.5-13.0
C3L/C3W	4.6-4.8	4.9-5.1	4.9-5.8
M3L/MBW	4.8.5.0	5.0.5.2	55-6,4
C3L/P3L.	0.6-0.9	0.8-1.1	0.6-0.8
M3L/P3L	1.1-13	1.1-1.4	1.1-1.3
P5L/P5W	11.5-14.5	B.0-11.0	12.2-15.4
C5L/C5W	4.2-5.7	4.1-4.6	3.9-5.8
M5L/M5W	5.7-7.5	5.6-6.0	6.4-6.9
C5L/P5L	0.4.0.6	0.5-0.6	0.4-0.6
MSL/PSI	0.8-0.9	[0.6-0.8	0.8-0.9

marginal long plumose setae distally and shorter ones proximally.
Third maxilliped reaching beyond tip of antennular peduncle: endopod three-segmented, basal segment length c. 6.5 X width; penultimate segment length c. 8 X width, c: 0.9 X basal segment length, with transverse rows of spiniform hamate setae; distal segment c. 0.9 X as long as penuttimate segment, ending in large claw-like apical hamate seta surrounded by simple and plumose ones, behind which there are 7-9 hamate setae on distal third of posterior margin, clump of serrate and pappose setae proximally; exopod reaching about 0.5 of 2 nd endopod segment, distal margin with long plumose setae.
First perciopod (Fig. 4i) reaching tip of basal antemnular segment; chela length 1.9-2.2 X width, movable finger $1,1 \mathrm{X}$ as long as palm. length 2.0-3.4 X width; finger tips rounded, without hooks, setal brushes well-developed. Carpus attached to chela ventrally, excavated distodorsally, length $1.6-2.5 \mathrm{X}$ width, 0.7-1.0 X chela length, $1,0 \mathrm{X}$ merus length, Merus compressed,

TABLE 2. Distinguishing characteristics of Caridina zebra Short, 1993 C. confusa sp . nov. and C spinula sp . nov. CL, post-orbital carapace length.

	C. zebra	C. contrisa	Cixpinula
Tistribution	mainly in raunforestcovered streams of the upper Tully, Herbert, Johnstone and Baron catchments	open grossland penches of streanes of the upper Jobnstove and Harror catchtrenis	roinforest-övered streams of Nisber und Archér catctionents in the Metllwaith Range, Cape York
Rostrum	to bip of Ind segment of autemilaf peduncie, length $0.21-0.50 \mathrm{CL}$	to beyond tip of 2ad sograent of antermblar pedimele, length 0.43.0.76 CL	To tip of Ist sqgizal of antennuler peduacle, lengu $020-0.35 \mathrm{CL}$
Antennular peduncle lenglis	$0.58 \pm 0.01 \mathrm{CL}$	$0.69 \pm 0.011 \mathrm{Cl}$.	$0.58 \pm 0.01 \mathrm{Cl}$.
Antennal pedurtie lengih	$0.40 \pm 0.01 \mathrm{CL}$	$0.52 \pm 0.01 \mathrm{CL}$	$0.44 \pm 0.01 \mathrm{Cl}$
Stylocerite	```to tip of 1st antennular peduncle segment, lenguk 0,30 \pm0.04CL```	not to tip of 1 st anternular peduncle segroent, lergut 0. 45 $=0.05 \mathrm{CL}$	not totip of 1st antzonular peduncle segment, langth 0.32 $\pm 0.01 \mathrm{CL}$
Scaphocerite length	$0.61 \pm 0.02 \mathrm{CL}$	$0.94 \pm 0,03 \mathrm{Cl}$	$0.62+0.02 \mathrm{CL}$
Plerygostamian engle	blundy angulat	bluetly angular	bluntly anguiar to acuts, spiniform
Lenyth of bitly abdominal segment	$0.48 \pm 0.01 \mathrm{CL}$.	$0.57 \pm 0.01 \mathrm{CL}$	$0.50 \pm 0.11 \mathrm{CL}$
Leugth-depth ratio of Gib abdonn segment	1.26 ± 0.07	1.68 ± 0.013	1.65 ± 0.08
Frotopod of aropod	elangate, spituse	shoor acute	alongate, 5mose
Telson	short, broad, $0.53 \pm$ 0.02 CL . anterior relsonic width $0.44 \pm$ 0,01 telsonic iength, posterior lelaonuc width 0.14 ± 0.01 relsomec length	elongate, narrow, $0.75 \pm 0.04 \mathrm{CL}$. anterigur welsanic widh 0.39 ± 0.01 telsonic lengtir. posterior helsonic width 1.5 ± 0.01 telsonis length	storn, broa4, $0.54 \pm$ 0.05 CL . anterion relsonic width till ! \pm 001 telsonic length. posterior telsonic width 11.20 ± 0.01 isesonic lenglis
Dotaial telsonit spination	to posterior two thirds of telson	confined to posterion halfol celson	10 posterier two hinds of lelson.
Telsonic margin	medhant spine may be present.	median spinc absent	median spirie tray be present
Diseresis	16.21	10-16	16.22
Undey, egs (mm)	$0.63-0.81 \times 1.02-1.21$	0.63-0.85x 0.988×1.36	$0.80-10.85 \times 1.30 \div 1.44$
Dev. egg size (mim)	$0.70-0.80 \times 1.22-1.32$	0.73-0.88× 122.1 .44	not available
Number dgge/cmale	38-57, mean-45	28-74, mnean 51.5	17-18, rakan 17.5

rounded by simple setae, behind which posterior margin bears 4-5 shorter spiniform hamate setae, these being more robust and upright in adult of of. Propodus length 10.5-13.0 X width, posterior margin and lateral surface bearing rows of small spiniform hamate setae Carpus length 0.6-0.8 X propodus length, distal projection feebly developed, posterior and lateral surfaces with 1 large and up to 5 small hamate setae, more spiniform setation in adult $\delta \delta$. Merus 1.6-1.9 X length of carpus, with 2-4 strong, movable spiniform hamate setae along posterior margin. Ischium 0.3 X length of mefus. Epipod present.
Fourth pereiopod reaching tip of 2nd segment to tip of 3 rd segment of antennular peduncle, morphologically similar to 3 rd pereiopod.

Fifth pereiopod (Fig. 4m, n) reaching tip of 2 nd segment to tip of 3 rd segment of antennular peduncle. Dactylus unguiculate. compressed, length c. 4.0 X width, ending in claw-like apical hamate seta, bearing comb-like row of 4.555 hamate setae gradually inereasing in length distally on posterior margin. Propodus length 12-15 X width, 3.3 X dactylus length, bearing rows of $10-15$ short hamate setac on posterior margin. Carpus length 0.4-0.6 X propodus length, bearing 2-7 short hamate setae, distal projection well-developed.
0.6 X as wide as carpus. Ischium length 0.41 X merus length. Epipad present.

Second pereiopod (Fig. 4j) reaching tip of 2nd segment of antennular peduncle, more slender and longer than 1 st pereiopod. Chela length 2.4 2.9 X width; movable finger length 3.2-4.5 X width, 1.6 X as long as palm; finger tips without hooks, setal brushes well-developed. Carpus subconical, length 5.8-6.1 X width, 1.4-2.0 X chela length, 1.1 X merus length. Ischium length 0.48 X merus length. Epipod present.
Third pereiopod (Fig. 4k, 1) over-reaching antennular peduncle tip by about 0.33 distal propodus. Dactylus sexually dimotphic in adults, length c. 2.6 X width, c. 0.25 X propodus length, ending in prominent claw-like hamate seta sur-

Merus shorter ($0.8-0,9 \mathrm{X}$) but broader (1.5 X) than propodus, bearing $2-4$ large spiniform hamate setae. Ischiumc. 0.3 X length of merus, with simple setae Epipod absent.
Abdomen (LC) well-developed, rotund, glabrous, c. $3 \times \mathrm{XCL} ; 6$ th abdominal segment elongate, c. 0.5 X CL , length-depth ratio c. 1.8 ; protopod of uropod acute, aspinose; telson (Fig. 40) broad, length c. 0.5 X CL , dorsal spination ($3-5$ pairs) confined to posterior 0.66 of telson; posterior telsonic margin rounded, 4-5 pairs of spine-like setae, decreasing in size anteriorly, median spine may be present; diaeresis on telsonic exopod 16-22.
First 8 pleopodal endopod (Fig. 4p) with welldeveloped appendix interna arising sub-distally.

Appendix interna of 2 nd 5 pleopodal endopod (Fig. 4q) reaching beyond middle of appendix masculina, with many retinaculae distally. Appendix masculina subcylindrical, long hamate setae distally and on inner lateral margin.
Live colour, translucent brown.
ETYMOLOGY. The specific name refers to the dislinctive, spiniform pterygostomian angle which may be present in some specimens. No other Australian Caridina species exhibits this spiniform plerygostomian angle.

REMARKS, Although C spinula sp . nov, looks very much like C. zebra, there are distinct morphological differences (Tables 1 and 2). The spiniform pterygostomian angle in specimens from Leo Creek is also very distinctive. This species is currently known only from the McIlwraith Range in the Cape York Peninsula and, despite extensive sampling, has not been found on the Atherton Tablelands around the Lamb-Francis-Cardwell Ranges (where C. zebra and C confusa sp. nov, are found). The only other likely area of its occurrence between the Atherton Tableland and the Mcllwraith Range that we have not sampled is the Cape Tribulation/Daintree area. However, none were found here during other sampling trips (J. Short and B. Herbert, pers. comm.), The Lee Creek tributary from where Caridina spinula sp. nov. was collected consists of a series of riffles and pools no more than 3 m long, 1 m wide and 0.3 m deep, flowing over a substrate of bedrock with some sand and gravel. Discharge at time of sampling was approximately $1 \mathrm{Ls}^{-1}$. Vegetation in the ares is tropical mesophyll rainforest with a closed canopy at only $6-8 \mathrm{~m}$ and some emergent vegetation. The low canopy suggests that this area may have recently been disturbed (David Hanger, pers. comm.). Density of the shrimp was low ($1-2 \mathrm{~m}^{-2}$). Other animals recorded from the collection site include the prawn Macrobrachium tolmerum (Decapoda: Palaemonidae) and the frogs Litoria genimaculata, L. longirostrus (Anura: Hylidac), Sphenophryne gracilipes (Anura: Microhylidae) and Rana daemeli (Anuta: Ranidae).

DISCUSSION

The Caridina rypus species-group. characterised by its short, dorsally unamed rostrum, can be identified using the key of Choy and Horwitz (1995) (10 couplet 6, p. 52), The four species can then be identified using the following key.

1. Rostrum long, extending beyond tip of second segment of antennular peduncle, $0.4-0.8$ times carapace length; stylocerite long, 0.4-0.5 times carapace length; sixth abdominal segment long. 0.55-0.59 times carapace length

Caridina confusa sp, nav
Rostrum short, not reaching tip of second segment of antennalar peduncle, 0.2-0.5 times carapace length; stylocerite and sixth abdominal segment short, <0.4 and <0.5 times carapace length respectively2
2. Rostrum somewhat laterally flattened, with I-5 teeth on ventral margin; posterior telson marguin angular, median plumose setae on posterior telson margin with sclerotinous plug. eggs small, $<0.6 \mathrm{~mm}$ long
C. typus

Rostrum somewhat dorsoventrally flattened, ventral teeth usually absent although one may be present: posterior telson margin rounded, median plumose setae without sclerotinous plug; eggs large, $>0.8 \mathrm{~mm}$ long
3. Rostrum short, not extending beyond tip of first segment of antennular peduncle: length to depilt ratio of sixth abdominal segment >1.4, number of eggs carried by female <25 - C spinula sp nov
Rostrum relatively long, usually extending beyond tip of first segment of antennular peduncle, length to depth ratio of sixth abdominal segment <1.4, number of eggs carried by female >30. C. zebra

Caridina zebra Short, 1993, C. confusa sp. nov. and C, spinula sp, nov, may also be separated on the basis of distinguishing characters given in Tables 1 and 2. It is emphasised that individual characters may be highly variable and so a combination of characters should be used to confirm the identity of keyed out specimens. The relationship between carapace length, rostrum, and the sixth abdominal segment lengths are linear for all three species (Fig. 5). The slopes and intercepts of the regression lines are significantly different for C. confusa when compared to the other two species ($\mathrm{P}>0,05$). All three species tend to be allopatric. It is only in and near the short rainforest reaches of Gwynne and Thiaki Creeks that C. zebra and C. confusa are sympatric. Although C, zebra has been collected from some open, para grass infested and anthropogenically disturbed reaches of streams (e.g., Raspberry, Ithaca and Prior's Creeks') it does not appear to be very tolerant of these conditions. It seems to prefer the rainforest reaches of stream. C. zebra is a rotund animal, more commonly found on sandy, silty and/or leaf litter beds of tipariati-covered rainforest streams and is particularly abundant in the more elevated, cooler areas (c. 800-950in), where fish predators and crustaccan competitors are ab-

FIG. 5. Correlation between carapace length, rostrum length and sixth abdominal segment length of Caridina zebra, C. confusa sp. nov. and C. spinula sp. nov. All regressions are significant ($\mathrm{P}<0.05$). The slopes and intercepts of the regression lines of the appropriate variables between C. confusa and C. zebra and between C. confusa and C. spinula are significantly different (ANOCOVA, P>0.05).
sent. C. confusa sp . nov. is a more etongate. slender animal more commonly found amongst the bank vegetation (particularly para grass) of streams flowing through open grassland areas of the Atherton Tableland.
It is likely that both the species were present in these previously rainforested areas. The modified environment may be favouring C. confusa, hence its predominance in these areas.

ACKNOWLEDGEMENTS

Stuart Bunn, Chris Marshall and David Hurwood of Griffith University. Brett Herbert of the Department of Primary Industries, Walkamin and Mark Hopper of the Department of Natural Resources, Mareeba assisted in collecting the samples. Peter Davie allowed access to the Queensland Museum collection and Juhn Short assisted in many ways, including helpful discussion. Funding from the Co-operative Research Centre for Tropical Rainforest Ecology and Management and the Wet Tropics Management Authority (through Griffith University), the Monitoring River Health Initiative Program and the Department of Natural Resources made possible the expeditions to collect samples. Stuart Bunn, Jane Hughes and John Short provided constructive criticism of the draft manuscript.

LITERATURE CITED

BOUVIER, E.L. 1925. Recherches sur la morphologie, les variations, la distribution géographique des Crevettes de la famille des Atyidés. Encyclopédie Entomologique. Sér. A 4: 1-370.

CHOY, S. 1991. The atyid shrimps of Fiji with deseription of a new species. Zoologische Mcdelingen 65(27): 343-362.
CHOY, S. \& HORWITZ. P. (1995). Preliminary key to the species of Australian shrimps (Atyidic) found in inland waters. Pp. 51-54. In Horwitz, P., 'A preliminary key to the specics of Decapoda (Crustacea: Malacostraca) found in Australian inland waters. Identification Guide No. 5.' Co-operative Research Centre for Frcshwater Ecology, Albury.
FELGENHAEUR. B.E. (1992). External anatony and integumentary structure. Pp. 7-43. In Hartison, F.W. \& Humes, A. G. (eds), 'Microscopic anatomy of invertebrates' Vol. 10. (Wiley-Liss: New York).
HOLTHUIS, L.B. 1965. The Atyidae of Madagascar. Mcmoires du Muscum national d'Histoire Naturelle (N.S.) (A), Zoologie 33(1): 1-48.
HUGHES, J.M., BUNN, S.E., HURWOOD, D.A., CHOY, S.C. \& PEARSON, R.G. 1996. Genetic differentiation among populations of Curidina zebra (Decapoda: Atyidae) in the tropical rainforest streams, northem Australia. Freshwater Biolggy 36: 287-296.
MILNE EDWARDS, H. 1937. Histoire naturelle des Crustaces, comprenant l'anatomie, la physiologie et la classification de ces animaux 2: 1-532, Allas. pp. 1-532. pls. 1-42.
RIEK, E.F. 1953. The Australian freshwater prawns of the family Atyidae. Records of the Australian Muscum 23: 111-121.
ROUX, J. 1926. An account of the Australian Atyidae. Records of the Australian Museum 15(3): $237-$ 254.

SHORT, J.W. 1993. Caridina zebra, a new species of freshwater atyid shrimp (Crustacea: Dccapodia) from northeastem Queensland rainforest. Memoirs of the Qucensland Muscum 34(1): 61-67.

